1. 若G是一个具有36条边的非连通无向图(不含自回路和多重边),则图G至少有_____
个顶点
A . 11 B. 10 C. 9 D. 8
B P4
2. 一个具有967个结点的完全二叉树,其叶子结点个数为_____
A . 483 B. 484 C. 485 D. 486
B P6 这里不用参考答案的方法也可以求解,而且更简单。由完全二叉树的特性和定义可知,一个深度为n的满二叉树的结点数为
2^n-1
, 第n层的结点数为2^(n-1)
。 若结点有967个结点,则完全二叉树的深度应该为10,第1到9层的结点总数为2^9 - 1 = 511
。 故第10层的叶子结点数为967 - 511 = 456
。第9层的叶子结点数为Math.floor((2^(10-1) - 456)/2) = 28
, 因此叶子结点个数为456 + 28 = 484
3. 若一棵哈夫曼树共有13个结点,则其叶子结点的个数为_____
A . 5 B. 6 C. 7 D. 8
C P6 由哈夫曼树的构造过程可知哈夫曼树是严格的二叉树,不存在度为1的结点,即
n = n0 + n2
。 又由于n0 = n2 + 1
, 则n = 2n2 + 1
, 求解可得n0 = 7, n2 = 6
本文链接: http://www.ionluo.cn/blog/posts/6803fa9b.html
版权声明: 本作品采用 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议 进行许可。转载请注明出处!